Aims

To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.

___________________________________________

Friday, January 18, 2013

Associations of the 5-hydroxytryptamine (serotonin) Receptor 1B gene (HTR1B) with alcohol, cocaine, and heroin abuse†‡


Abnormal serotonergic pathways are implicated in numerous neuropsychiatric disorders including alcohol and drug dependence (abuse). The human 5-hydroxytryptamine (serotonin) receptor 1B, encoded by the HTR1B (5-HT1B) gene, is a presynaptic serotonin autoreceptor that plays an important role in regulating serotonin synthesis and release.

Although there was evidence of associations of the HTR1B gene variants in the etiologies of substance use disorders, negative findings were also reported. To clarify the roles of commonly reported single nucleotide polymorphisms (SNPs) of the HTR1B gene underlying alcohol and drug dependence (abuse), we performed a meta-analysis based on the available genotype data from individual candidate gene-based association studies.

Evidence of association was found between the functional SNP −161A>T (rs130058) and alcohol, cocaine, and heroin dependence (e.g., P = 0.03 and odds ratio (OR) = 1.2 (1.02, 1.42) in the combined European, Asian, African, and Hispanic populations).


SNP −261T>G (rs11568817) also showed evidence of association but with different directions in Europeans and non-Europeans (e.g., P = 0.0018 with OR = 1.42 (1.14, 1.76) and P = 0.01 with ORs = 0.5 (0.3, 0.85), respectively). 

This meta-analysis supports the associations of HTR1B −261T>G and −161A>T with alcohol and drug abuse and further investigations are warranted in larger samples


Read Full Abstract

Request Reprint E-Mail:  dawei.li@uvm.edu