Aims

To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.

___________________________________________

Thursday, August 8, 2013

Sensory-Motor Deficits in Children with Fetal Alcohol Spectrum Disorder Assessed Using a Robotic Virtual Reality Platform





Fetal alcohol spectrum disorder (FASD) is associated with a large number of cognitive and sensory-motor deficits. In particular, the accurate assessment of sensory-motor deficits in children with FASD is not always simple and relies on clinical assessment tools that may be coarse and subjective. Here we present a new approach: using robotic technology to accurately and objectively assess motor deficits of children with FASD in a center-out reaching task.
 
A total of 152 typically developing children and 31 children with FASD, all aged between 5 and 18 were assessed using a robotic exoskeleton device coupled with a virtual reality projection system. Children made reaching movements to 8 peripheral targets in a random order. Reach trajectories were subsequently analyzed to extract 12 parameters that had been previously determined to be good descriptors of a reaching movement, and these parameters were compared for each child with FASD to a normative model derived from the performance of the typically developing population.
 
Compared with typically developing children, the children with FASD were found to be significantly impaired on most of the parameters measured, with the greatest deficits found in initial movement direction error. Also, children with FASD tended to fail more parameters than typically developing children: 95% of typically developing children failed fewer than 3 parameters compared with 69% of children with FASD. These results were particularly pronounced for younger children.
 
The current study has shown that robotic technology is a sensitive and powerful tool that provides increased specificity regarding the type of motor problems exhibited by children with FASD. The high frequency of motor deficits in children with FASD suggests that interventions aimed at stimulating and/or improving motor development should routinely be considered for this population.


Read Full Abstract


Request Reprint E-Mail:   jnr@queensu.ca