Aims

To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.

___________________________________________

Friday, February 1, 2008

Distinct Mechanisms of Ethanol Potentiation of Local and Paracapsular GABAergic Synapses in the Rat Basolateral Amygdala
JPET 324:251-260, 2008


Converging lines of behavioral and pharmacological evidence suggest that GABAergic synapses in the basolateral amygdala (BLA) may play an integral role in mediating the anxiolytic effects of ethanol (EtOH). Since anxiety is thought to play an important role in the development of, and relapse to, alcoholism, elucidating the mechanisms through which EtOH modulates GABAergic synaptic transmission in the BLA may be fundamental in understanding the etiology of this disease.

A recent study in mice has shown that principal cells within the BLA receive inhibitory input from two distinct types of GABAergic interneurons: a loosely distributed population of local interneurons and a dense network of paracapsular (pcs) GABAergic cells clustered along the external capsule border.

Here, we sought to confirm the presence of these two populations of GABAergic synapses in the rat BLA and evaluate their ethanol sensitivity.

Our results suggest that rat BLA pyramidal cells receive distinct inhibitory input from local and pcs interneurons and that EtOH potentiates both populations of synapses, albeit via distinct mechanisms. EtOH enhancement of local inhibitory postsynaptic currents (IPSCs) was associated with a significant decrease in paired-pulse ratio (PPR) and was significantly potentiated by the GABAB receptor antagonist SCH 50911 [(+)-(S)-5,5-dimethylmorpholinyl-2-acetic acid], consistent with a facilitation of GABA release from presynaptic terminals. Conversely, EtOH enhancement of pcs IPSCs did not alter PPR and was not enhanced by SCH 50911 but was inhibited by blockade of noradrenergic receptors.

Collectively, these data reveal that EtOH can potentiate GABAergic inhibitory synaptic transmission in the rat BLA through at least two distinct pathways.

Read Full Abstract



Request Reprint E-Mail:
jweiner@wfubmc.edu
______________________________________________________