Alcoholism: Clinical and Experimental Research OnlineEarly Articles 19 June 2008
The glutamate system plays a major role in mediating EtOH’s effects on brain and behavior, and is implicated in the pathophysiology of alcohol-related disorders. N-methyl-D-aspartate receptor (NMDAR) antagonists such as MK-801 (dizocilpine) interact with EtOH at the behavioral level, but the molecular basis of this interaction is unclear.
MK-801 markedly potentiated the ataxic effects of 1.75 g/kg EtOH and the sedative/hypnotic effects of 3.0 g/kg EtOH, but not the hypothermic effects of 3.0 g/kg EtOH, in C57BL/6J and 129/SvImJ mice. Phencyclidine potentiated EtOH-induced sedation/hypnosis in both inbred strains. Neither NR2A nor GluR1 KO significantly altered basal EtOH-induced ataxia, hypothermia, or sedation/hypnosis. Ro 25-6981 modestly increased EtOH-induced sedation/hypnosis. The ability of MK-801 to potentiate EtOH-induced ataxia and sedation/hypnosis was unaffected by GluR1 KO or NR2B antagonism. NR2A KO partially reduced MK-801 + EtOH-induced sedation/hypnosis, but not ataxia or hypothermia.
Data confirm a robust and response-specific potentiating effect of MK-801 on sensitivity to EtOH’s intoxicating effects. Inactivation of three major components of glutamate signaling had no or only partial impact on the ability of MK-801 to potentiate behavioral sensitivity to EtOH. Further work to elucidate the mechanisms underlying NMDAR × EtOH interactions could ultimately provide novel insight into the role of NMDARs in alcoholism and its treatment.
Request Reprint E-Mail: holmesan@mail.nih.gov
____________________________________________________________________