To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.


Monday, September 10, 2012

Towards Measuring Brain Function on Groups of People in the Real World

In three studies, EEGs from three groups of participants were recorded during progressively more real world situations after drinking alcoholic beverages that brought breath alcohol contents near the limit for driving in California 30 minutes after drinking.

A simple equation that measured neurophysiological effects of alcohol in the first group of 15 participants performing repetitive cognitive tasks was applied to a second group of 15 operating an automobile driving simulator, and to a third group of 10 ambulatory people recorded simultaneously during a cocktail party.

The equation derived from the first group quantified alcohol’s effect by combining measures of higher frequency (beta) and lower frequency (theta) power into a single score. It produced an Area Under the Receiver Operator Characteristic Curve of .73 (p<.05; 67% sensitivity in recognizing alcohol and 87% specificity in recognizing placebo). Applying the same equation to the second group operating the driving simulator, AUC was .95, (p<.0001; 93% sensitivity and 73% specificity), while for the cocktail party group AUC was .87 (p<.01; 80% sensitivity and 80% specificity).

EEG scores were significantly related to breath alcohol content in all studies. Some individuals differed markedly from the overall response evident in their respective groups.

The feasibility of measuring the neurophysiological effect of a psychoactive substance from an entire group of ambulatory people at a cocktail party suggests that future studies may be able to fruitfully apply brain function measures derived under rigorously controlled laboratory conditions to assess drug effects on groups of people interacting in real world situations.

Read Full Article (PDF)