Alcohol dependence is a complex psychiatric disorder demanding development of novel pharmacotherapies. Because the cyclic adenosine monophosphate (cAMP) signaling cascade has been implicated in mediating behavioral responses to alcohol, key components in this cascade may serve as potential treatment targets. Phosphodiesterase-4 (PDE4), an enzyme that specifically catalyzes the hydrolysis of cAMP, represents a key point in regulating intracellular cAMP levels. Thus, it was of interest to determine whether PDE4 was involved in the regulation of alcohol use and abuse.
Male Fawn-Hooded (FH/Wjd) rats were tested for 5% (v/v) ethanol (EtOH) and 10% (w/v) sucrose operant oral self-administration following treatment with the selective PDE4 inhibitor rolipram (0.0125, 0.025, or 0.05 mg/kg, subcutaneous [s.c.]); rolipram at higher doses (0.05, 0.1, and 0.2 mg/kg, s.c.) was tested to determine its impact on the intake of EtOH, sucrose, or water using the 2-bottle choice drinking paradigm. Subsequent open-field testing was performed to evaluate the influence of higher doses of rolipram on locomotor activity.
Acute administration of rolipram dose-dependently reduced operant self-administration of 5% EtOH, but had no effect on 10% sucrose responding. Time-course assessment revealed significant decreases in EtOH consumption after rolipram (0.1, 0.2 mg/kg) treatment in continuous- and intermittent access to EtOH at 5% or 10%, respectively. Moreover, chronic rolipram treatment time-dependently decreased 5% EtOH consumption and preference during treatment days and after the termination of rolipram administration. Rolipram at the highest doses (0.1 and 0.2 mg/kg) did decrease locomotor activity, but the effect lasted only 10 and 20 minutes, respectively, which did not likely alter long-term EtOH drinking.
These results suggest that PDE4 plays a role in alcohol seeking and consumption behavior. Drugs interfering with PDE4 may be a potential pharmacotherapy for alcohol dependence.
Request Reprint E-Mail: hzhang@hsc.wvu.edu