We demonstrated previously that rats exposed to chronic intermittent ethanol  (CIE) vapors in early adolescence show increased magnitudes of long-term  potentiation (LTP) of excitatory transmission when recorded at dendritic  synapses in hippocampus. Large amplitude LTP following CIE exposure is mediated  by sigma-1 receptors; however, not yet addressed is the role of sigma-1  receptors in modulating the intrinsic properties of neurons to alter their  action potential firing during LTP.
 Activity-induced plasticity of spike firing was investigated  using rat hippocampal slice recordings to measure changes in both field  excitatory postsynaptic potentials (fEPSPs) and population spikes (pop. spikes)  concomitantly at dendritic inputs and soma of CA1 pyramidal neurons,  respectively.
 We observed unique modifications in plasticity of action  potential firing in hippocampal slices from CIE exposed adolescent rats, where  the induction of large amplitude LTP by 100 Hz stimulations was accompanied by  reduced CA1 neuronal excitability––reflected as decreased pop. spike efficacy  and impaired activity-induced fEPSP-to-spike (E-S) potentiation. 
In contrast, LTP induction in ethanol-naïve control slices resulted in increased spike efficacy and robust E-S potentiation.
E-S potentiation impairments emerged at 24 hours after CIE treatment cessation, but not before the alcohol withdrawal period, and were restored with bath-application of the sigma-1 receptor selective antagonist BD1047, but not the NMDA receptor antagonist d-AP5.
Further evidence revealed a significantly shortened somatic fEPSP time course in adolescent CIE-withdrawn hippocampal slices during LTP; however, paired-pulse data show no apparent correspondence between E-S dissociation and altered recurrent feedback inhibition.
In contrast, LTP induction in ethanol-naïve control slices resulted in increased spike efficacy and robust E-S potentiation.
E-S potentiation impairments emerged at 24 hours after CIE treatment cessation, but not before the alcohol withdrawal period, and were restored with bath-application of the sigma-1 receptor selective antagonist BD1047, but not the NMDA receptor antagonist d-AP5.
Further evidence revealed a significantly shortened somatic fEPSP time course in adolescent CIE-withdrawn hippocampal slices during LTP; however, paired-pulse data show no apparent correspondence between E-S dissociation and altered recurrent feedback inhibition.
 Results here suggest that acute withdrawal from  adolescent CIE exposure triggers sigma-1 receptors that act to depress the  efficacy of excitatory inputs in triggering action potentials during LTP. Such  withdrawal-induced depression of E-S plasticity in hippocampus probably entails  sigma-1 receptor modulation of 1 or several voltage-gated ion channels  controlling the neuronal input–output dynamics.
Read Full Abstract
Request Reprint E-Mail: jsabeti@binghamton.edu
Read Full Abstract
Request Reprint E-Mail: jsabeti@binghamton.edu

 
