Aims

To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.

___________________________________________

Friday, February 18, 2011

Assessment of Voluntary Ethanol Consumption and the Effects of a Melanocortin (MC) Receptor Agonist on Ethanol Intake in Mutant C57BL/6J Mice Lacking the MC-4 Receptor



The melanocortin (MC) system is composed of peptides that are cleaved from the polypeptide precursor proopiomelanocortin (POMC). Recent evidence shows that chronic exposure to ethanol significantly blunts central MC peptide immunoreactivity and MC receptor (MCR) agonists protect against high ethanol intake characteristic of C57BL/6J mice. 

Here, we assessed the role of the MC-4 receptor (MC4R) in voluntary ethanol intake and in modulating the effects of the nonselective MCR agonist melanotan-II (MTII) on ethanol consumption.
To assess the role of the MC4R, MC4R knockout (Mc4r−/−) and littermate wild-type (Mc4r+/+) mice on a C57BL/6J background were used. Voluntary ethanol (3, 5, 8, 10, 15, and 20%, v/v) and water intake were assessed using standard two-bottle procedures. In separate experiments, Mc4r−/− and Mc4r+/+ mice were given intracerebroventricular (i.c.v.) infusion of MTII (0, 0.5, or 1.0 μg/1 μl) or intraperitoneal (i.p.) injection of MTII (0 or 5 mg/kg/5 ml). The effects of MTII (0 or 0.5 μg/1 μl, i.c.v.) on 10% sucrose and 0.15% saccharin intake were assessed in C57BL/6J mice.

Mc4r−/− mice showed normal consumption of ethanol over all concentrations tested. I.c.v. infusion of MTII significantly reduced ethanol drinking in Mc4r+/+ mice, but failed to influence ethanol intake in Mc4r−/− mice. When administered in an i.p. injection, MTII significantly reduced ethanol drinking in both Mc4r−/−+/+ mice. MTII attenuated consumption of caloric (ethanol, sucrose, and food) and noncaloric (saccharin) reinforcers.
When given centrally, the MCR agonist MTII reduced ethanol drinking by signaling through the MC4R. On the other hand, MTII-induced reduction of ethanol drinking did not require the MC4R when administered peripherally. Together, the present observations show that the MC4R is necessary for the central actions of MCR agonists on ethanol drinking and that MTII blunts the consumption natural reinforcers, regardless of caloric content, in addition to ethanol.




Request Reprint E-Mail:  thiele@unc.edu