Aims

To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.

___________________________________________

Friday, November 12, 2010

Adolescents At Risk for Alcohol Abuse Demonstrate Altered Frontal Lobe Activation During Stroop Performance



Children and adolescents, family history positive (FH+) for alcoholism, exhibit differences in brain structure and functional activation when compared to family history negative (FH−) counterparts. Given that frontal brain regions, and associated reciprocal connections with limbic structures, undergo the most dramatic maturational changes during adolescence, the objective of this study was to compare functional brain activation during a frontally mediated test of response inhibition in 32 adolescents separated into low-risk (FH−) and high-risk (FH+) groups.
Functional magnetic resonance (fMRI) blood oxygen level–dependent data were acquired at 1.5 Tesla during performance of Stroop Color Naming, Word Reading, and Interference. Preprocessing and statistical analyses, covaried for age, were conducted in SPM99 using a search territory that included superior, middle, and inferior frontal gyri (trigone region), anterior cingulate gyrus (CG), and left and right amygdala.
Significantly greater activation in the fronto-limbic search territory was observed in FH+ relative to FH− subjects during Stroop Interference. In addition, a significant regression between brain activation and family history density was observed, with a greater density being associated with increased activation in regions including middle frontal gyrus (BA9) and CG (BA24).
These data demonstrate a significant influence of FH status on brain activation during the performance of a response inhibition task, perhaps reflecting a neurobiological vulnerability associated with FH status that may include reduced neuronal efficiency and/or recruitment of additional neuronal resources. These findings are important given that the adolescent developmental period is already associated with reduced inhibitory capacity, even prior to the onset of alcohol use.


Read Full Abstract 

Request Reprint E-Mail:   msilveri@mclean.harvard.edu