To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.


Monday, March 26, 2012

Timing-dependent reduction in ethanol sedation and drinking preference by NMDA receptor co-agonist d-serine

NMDA receptors become a major contributor to acute ethanol intoxication effects at high concentrations as ethanol binds to a unique site on the receptor and inhibits glutamatergic activity in multiple brain areas. Although a convincing body of literature exists on the ability of NMDA receptor antagonists to mimic and worsen cellular and behavioral ethanol effects, receptor agonists have been less well-studied. In addition to a primary agonist site for glutamate, the NMDA receptor contains a separate co-agonist site that responds to endogenous amino acids glycine and d-serine. d-serine is both selective for this co-agonist site and potent in boosting NMDA dependent activity even after systemic administration.

In this study, we hypothesized that exogenous
d-serine might ameliorate some acute ethanol behaviors by opposing NMDA receptor inhibition.

We injected adult male C57 mice with a high concentration of
d-serine at various time windows relative to ethanol administration and monitored sedation, motor coordination and voluntary ethanol drinking. d-serine (2.7 g/kg, ip) prolonged latency to a loss of righting reflex (LoRR) and shortened LoRR duration when given 15 min before ethanol (3 g/kg) but not when it was injected with or shortly after ethanol.

Blood samples taken at sedative recovery and at fixed time intervals revealed no effect of
d-serine on ethanol concentration but an ethanol-induced decrease in l-serine and glycine content was prevented by acute d-serine pre-administration. d-serine had no effect on ethanol-induced (2 g/kg) rotarod deficits in young adult animals but independently and interactively degraded motor performance in a subset of older mice.

Finally, a week-long series of daily ip injections resulted in a 50% decrease in free choice ethanol preference for
d-serine treated animals compared to saline-injected controls in a two-bottle choice experiment.

Read Full Abstract

Request Reprint E-Mail: