To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.


Thursday, January 12, 2012

Responding in a Test of Decision-Making Under Risk is Under Moderate Genetic Control in the Rat

Risk-taking, measured with laboratory tasks such as the Balloon Analog Risk Task (BART), is associated with real-life manifestations of risky behaviors, which may be an important component of inherited liability to alcohol use disorders. To identify genomic factors that influence these traits, the current study (i) characterized performance of a rodent version of the BART in multiple inbred rat strains, (ii) tested the degree to which performance was under genetic control, (iii) explored sex differences in performance, and (iv) evaluated the risk-taking

behavior of F1 progeny of high-risk- and low-risk-taking strains to examine modes of inheritance.

Male and female rats (N = 100) from 5 inbred strains (Wistar-Furth, Fischer-344, Lewis, Spontaneously Hypertensive, Brown Norway) and Wistar-Furth × Fischer-344 hybrids were tested in the rat-BART, as well as in tests of locomotor activity, sucrose preference, and general motivation.

About 55% of the variance in risk-taking behavior was attributable to heritable factors. The Fischer-344 strain was the most risk-taking and the most variable in responding. The mating of low-risk-taking Wistar-Furth and Fischer-344 rats produced progeny that behaved most like the Fischer-344 strain. Consistent with prior research in this laboratory (Jentsch et al., 2010), all rats were sensitive to changes in both risk and reinforcement parameters in the rat-BART; rats decreased voluntary risk-taking in the face of increasing risk and increased lever pressing when reinforcement probabilities were reduced.

Our results endorse a moderately heritable pattern of risk-taking behavior in rats. The behavior of the hybrid progeny suggests a polygenic model with most gene effects transmitted by mode of dominant inheritance. The identification of high-risk and low-risk strains allows for isolation of quantitative trait loci associated with task performance and for probing the relationships between risk-taking and dimensions of alcohol use disorders.

Read Full Abstract

Request Reprint E-Mail: