To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.


Tuesday, August 27, 2013

Effects of Ethanol on Immune Response in the Brain: Region-Specific Changes in Adolescent Versus Adult Mice

Alcohol use occurs across the life span beginning in adolescence and continuing through adulthood. Ethanol (EtOH)-induced pathology varies with age and includes changes in neurogenesis, neurodegeneration, and glial cell activation. EtOH-induced changes in glial activation and immune activity are believed to contribute to EtOH-induced neuropathology. Recent studies indicate an emerging role of glial-derived neuroimmune molecules in alcohol abuse and addiction.

Adolescent and adult C57BL/6 mice were treated via gavage with 6 g/kg EtOH for 10 days, and tissue was harvested 1 day post treatment. We compared the effects of EtOH on chemokine and cytokine expression and astrocyte glial fibrillary acidic protein (GFAP) immunostaining and morphology in the hippocampus, cerebellum, and cerebral cortex.

EtOH increased mRNA levels of the chemokine CCL2/MCP-1 in all 3 regions of adult mice relative to controls. The cytokine interleukin-6 (IL-6) was selectively increased only in the adult cerebellum. EtOH did not affect mRNA levels of the cytokine tumor necrosis factor-alpha (TNF-α) in any of these brain regions in adult animals. Interestingly, CCL2, IL-6, and TNF-α mRNA levels were not increased in the hippocampus, cerebellum, or cortex of adolescent mice. EtOH treatment of adult and adolescent mice resulted in increased GFAP immunostaining.

Collectively, these data indicate an age- and region-specific susceptibility to EtOH regulation of neuroinflammatory and addiction-related molecules as well as astrocyte phenotype. These studies may have important implications concerning differential alcohol-induced neuropathology and alcohol addiction across the life span.

Read Full Abstract

Request Reprint E-Mail: