Aims

To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.

___________________________________________

Thursday, April 11, 2013

Mice Bred for Severity of Acute Alcohol Withdrawal Respond Differently in a Go/No-Go Task


Mice selectively bred for high or low withdrawal to acute alcohol differ on a number of traits, including consumption of alcohol, conditioned place preference for alcohol, and sensitivity to alcohol-induced locomotor activity. One trait that has not been examined in these mice is behavioral inhibition.
 
High and low alcohol withdrawal mice (second replicate: high and low acute alcohol withdrawal [HAW-2/LAW-2]) were trained and tested in a Go/No-go task. Mice were administered 0.0, 0.5, 1.0, and 1.5 g/kg ethanol (EtOH) on 3 occasions according to an incomplete Latin Square. A separate cohort of C57BL/6J (B6) and DBA/2J (D2) mice (the progenitor strains for HAW-2/LAW-2 mice) underwent the same protocol, using the same EtOH doses.
 
HAW-2 and LAW-2 mice did not differ in behavioral inhibition at baseline, although LAW-2 mice did have higher overall levels of responding in the task. EtOH did not alter behavioral inhibition in these mice. However, it did decrease responses to the Go cue, and this effect was greater in HAW-2 mice than in LAW-2 mice. D2 mice had lower behavioral inhibition than B6 mice at baseline, and EtOH slightly decreased behavioral inhibition in both strains.
 
The findings with D2 and B6 mice generally fit with the existing literature. However, the lack of a difference in behavioral inhibition between HAW-2 and LAW-2 mice was unexpected, as well as the absence of any effect of these doses of EtOH on behavioral inhibition in these mice. Nonetheless, the findings do suggest that selectively breeding for high or low withdrawal to acute alcohol can lead to differences in operant behavior in the Go/No-go task.


Read Full Abstract

Request Reprint E-Mail:    mitchesu@ohsu.edu