Aims

To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.

___________________________________________

Thursday, March 28, 2013

αCaMKII Autophosphorylation Controls the Establishment of Alcohol Drinking Behavior




The α-Ca2+/calmodulin-dependent protein kinase II (αCaMKII) is a crucial enzyme controlling plasticity in the brain. The autophosphorylation of αCaMKII works as a ‘molecular memory’ for a transient calcium activation, thereby accelerating learning.
We investigated the role of αCaMKII autophosphorylation in the establishment of alcohol drinking as an addiction-related behavior in mice.

We found that alcohol drinking was initially diminished in αCaMKII autophosphorylation-deficient αCaMKIIT286A mice, but could be established at wild-type level after repeated withdrawals. The locomotor activating effects of a low-dose alcohol (2g/kg) were absent in αCaMKIIT286A mice, whereas the sedating effects of high-dose (3.5g/kg) were preserved after acute and subchronic administration. The in vivo microdialysis revealed that αCaMKIIT286A mice showed no dopamine (DA) response in the nucleus accumbens to acute or subchronic alcohol administration, but enhanced serotonin (5-HT) responses in the prefrontal cortex. The attenuated DA response in αCaMKIIT286A mice was in line with altered c-Fos activation in the ventral tegmental area after acute and subchronic alcohol administration.

In order to compare findings in mice with the human condition, we tested 23 single-nucleotide polymorphisms (SNPs) in the CAMK2A gene for their association with alcohol dependence in a population of 1333 male patients with severe alcohol dependence and 939 controls. We found seven significant associations between CAMK2A SNPs and alcohol dependence, one of which in an autophosphorylation-related area of the gene.

Together, our data suggest αCaMKII autophosphorylation as a facilitating mechanism in the establishment of alcohol drinking behavior with changing the DA–5-HT balance as a putative mechanism.



Read Full Abstract

Request Reprint E-Mail:  
christian.mueller@uk-erlangen.de