To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.


Wednesday, October 31, 2012

Combined Proteomic Analysis of Liver Tissue and Serum in Chronically Alcohol-Fed Rats

Proteomic approaches may provide new insights into pathological conditions associated with alcoholism. The aim of this study was to conduct a proteomic analysis of liver tissue and serum in chronically alcohol-fed rats using agarose 2-dimensional gel electrophoresis (2-DE) and 3-step serum proteome analysis.

A total of 12 rats were pair-fed nutritionally adequate liquid diet containing ethanol as 36% of the total energy or an isocaloric control diet for 2 months. Rat liver homogenates and cytosol fractions were subjected to agarose 2-DE. Serum samples were subjected to 3-step serum proteome analysis involving immunodepletion of abundant proteins followed by fractionation using reverse-phase high-performance liquid chromatography and 1-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Candidate proteins were digested with trypsin and identified using mass spectrometry. Observed differences in protein expression levels were confirmed using Western blotting.

A total of 46 protein spots were found to be differentially expressed in the liver homogenates and cytosol fractions of alcohol-fed rats relative to pair-fed controls. The most notable change was down-regulation of a 29-kDa protein, which was subsequently identified as carbonic anhydrase III (CA III). Down-regulation of this protein in alcohol-fed rats was confirmed by Western blotting. The messenger RNA level of CA III was decreased as well. In rat serum, a total of 41 proteins were differentially expressed. Of these proteins, only betaine–homocysteine methyltransferase (BHMT) was also found to be differentially expressed in the liver.

A combined proteomic analysis of liver tissue and serum in chronically alcohol-fed rats revealed that the expression of CA III is significantly down-regulated in the liver of alcohol-fed rats. Our results also showed that BHMT expression is up-regulated in both the liver and serum of alcohol-fed rats.

Read Full Abstract

Request Reprint E-Mail: