Aims

To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.

___________________________________________

Sunday, April 15, 2012

Glutamate, GABA, and other cortical metabolite concentrations during early abstinence from alcohol and their associations with neurocognitive changes




Little is known about the effects of alcohol dependence on cortical concentrations of glutamate (Glu) or gamma aminobutyric acid (GABA). We used proton magnetic resonance spectroscopy (MRS) to study cross-sectionally and longitudinally the concentrations of these in alcohol dependent individuals (ALC) during early abstinence from alcohol.

Twenty ALC were studied at about one week of abstinence from alcohol (baseline) and 36 ALC at five weeks of abstinence and compared to 16 light/non-drinking controls (LD). Eleven ALC were studied twice during abstinence. Participants underwent clinical interviewing, blood work, neuropsychological testing, structural imaging and single-volume proton MRS at 4 Tesla. Absolute concentrations of Glu, GABA and those of other 1H MRS-detectable metabolites were measured in the anterior cingulate (ACC), parieto-occipital cortex (POC) and dorso-lateral prefrontal cortex (DLPFC). Relationships of metabolite levels to drinking severity and neurocognition were also assessed.

ALC at baseline had lower concentrations of Glu, N-acetylaspartate (NAA), choline- (Cho) and creatine-containing metabolites (Cr) than LD in the ACC, but had normal GABA and myo-inositol (mI) levels. At five weeks of abstinence, metabolite concentrations were not significantly different between groups. Between one and five weeks of abstinence, Glu, NAA and Cho levels in the ACC increased significantly. Higher cortical mI concentrations in ALC related to worse neurocognitive outcome.

These MRS data suggest compromised and regionally specific bioenergetics/metabolism in one-week-abstinent ALC that largely normalizes over four weeks of sustained abstinence. The correlation between mI levels and neurocognition affirms the functional relevance of this putative astrocyte marker.



Read Full Abstract


Request Reprint E-Mail: Anderson.Mon@ucsf.edu