Thirty female Wistar rats segregated into five groups, each with six animals, were put to different doses. Group I as control followed by Group II, III and IV were treated with ethanol (5,8,10 and 12g/kg body weight per week respectively) for 4 weeks. While Group III and IV were administered with chrysin at 20 mg (D1) and 40 mg/kg body weight (D2), respectively, prior to ethanol administration. Group V was given only chrysin (D2). Various oxidative stress and ethanol metabolizing enzymes were estimated in hepatic and renal tissues.
Ethanol administration significantly induced CYP 2E1, ADH and XO in liver and kidneys, respectively, along with an enhancement in levels of malondialdehyde and serum alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, creatinine and lactate dehydrogenase when compared with the control group and this enhancement is significantly normalized with chrysin administration. Oxidative stress markers: reduced glutathione, glutathione peroxidase, catalase and glutathione reductase were significantly (P < 0.001) depleted in the ethanol-treated group, while chrysin administration significantly restored all of these. Only chrysin administration did not show any adverse effect.
Results demonstrate that chrysin administration prevents the liver and kidney of Wistar rats against oxidative damage during chronic ethanol consumption by inhibiting the activities of ADH, CYP 2E1, XO and catalase.
Read Full Abstract
Request Reprint E-Mail: sarwat786@rediffmail.com