Aims

To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.

___________________________________________

Wednesday, March 16, 2011

Alcohol Decreases RhoA Activity Through a Nitric Oxide (NO)/Cyclic GMP(cGMP)/Protein Kinase G (PKG)-Dependent Pathway in the Airway Epithelium



Alcohol has been shown to have a number of harmful effects on the lung, including increasing the risk of pneumonia and bronchitis. How alcohol increases the risk of these diseases is poorly defined. RhoA is a small guanosine triphosphate (GTP)ase that plays an integral role in many basic functions of airway epithelial cells. It is not known how alcohol affects RhoA activity in the airway epithelium. We hypothesized that brief alcohol exposure modulates RhoA activity in the airway epithelium through a nitric oxide (NO)/cyclic GMP (cGMP)/protein kinase G (PKG)-dependent pathway.

Primary airway epithelial cells were cultured and exposed to ethanol at various concentrations and times. The cell layers were harvested and RhoA activity was measured.

Alcohol induced a time- and concentration-dependent decrease in RhoA activity in airway epithelial cells. We were able to block this decrease in activity using Nω-nitro-l-arginine methyl ester (L-NAME) hydrochloride, a nitric oxide synthase (NOS) inhibitor. Likewise, we were able to demonstrate the same decrease in RhoA activation using 0.1 μM sodium nitroprusside, an NO donor. To determine the role of cGMP/PKG, we pretreated the cells with a cGMP antagonist analog, Rp-8Br-cGMPS. This blocked the decrease in RhoA activity caused by alcohol, suggesting that alcohol exerts its effect on RhoA activity through cGMP/PKG.

Alcohol decreases airway epithelial RhoA activity through an NO/cGMP/PKG-dependent pathway. RhoA activity controls many aspects of basic cellular function, including cell morphology, tight junction formation, and cell cycle progression and gene regulation. Dysregulation of RhoA activity can potentially have several consequences, including dysregulation of inflammation. This may partially explain how alcohol increases the risk of pneumonia and bronchitis.


Read Full Abstract 

Request Reprint E-Mail:   kbailey@unmc.edu