Aims

To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.

___________________________________________

Thursday, December 10, 2009

Preferential Ethanol Consumption in Drosophila Models Features of Addiction


Alcohol addiction is a common affliction with a strong genetic component . Although mammalian studies have provided significant insight into the molecular mechanisms underlying ethanol consumption , other organisms such as Drosophila melanogaster are better suited for unbiased, forward genetic approaches to identify novel genes. Behavioral responses to ethanol, such as hyperactivity, sedation, and tolerance, are conserved between flies and mammals , as are the underlying molecular pathways However, few studies have investigated ethanol self-administration in flies .

Here we characterize ethanol consumption and preference in
Drosophila. Flies prefer to consume ethanol-containing food over regular food, and this preference increases over time. Flies are attracted to the smell of ethanol, which partially mediates ethanol preference, but are averse to its taste. Preference for consuming ethanol is not entirely explained by attraction to either its sensory or caloric properties.

We demonstrate that flies can exhibit features of alcohol addiction. First, flies self-administer ethanol to pharmacologically relevant concentrations. Second, flies will overcome an aversive stimulus in order to consume ethanol. Third, flies rapidly return to high levels of ethanol consumption after a period of imposed abstinence.

Thus, ethanol preference in
Drosophila provides a new model for studying aspects of addiction.

Read Full Abstract

Request Reprint E-Mail: anita.devineni@ucsf.edu
___________________________________________
-