Aims

To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.

___________________________________________

Thursday, October 2, 2008

Haplotypic Variants in DRD2, ANKK1, TTC12, and NCAM1 are Associated With Comorbid Alcohol and Drug Dependence
Alcoholism: Clinical and Experimental ResearchPublished Online: 1 Oct 2008


Each gene in the chromosome 11q23 cluster of NCAM1, TTC12, ANKK1, and DRD2 is functionally linked to dopamine in brain. Many association studies of DRD2 and substance dependence (SD), including alcohol dependence (AD) and drug dependence (DD), have been reported; the results have been inconsistent. Recent association studies have considered this cluster more comprehensively, examining the association of SD with several risk variants mapped to the other genes in the cluster. Because comorbid AD with DD (AD+DD) is common, we hypothesized that heterogeneity of the SD diagnoses studied might have contributed to the inconsistency of prior results.

For AD+DD, the risk regions centered on TTC12 exon 3 [optimal individual haplotype simulated p (poihs) = 0.000015], and another extended from ANKK1 exon 8 to DRD2^C957T (poihs = 0.0028), in both samples. NCAM1 exon 12 markers showed global significance in both designs, but were significant for specific haplotypes (poihs = 0.0029) only for the family sample. For AD-only, NCAM1 intron 14 to 18 and the junction of ANKK1 and DRD2 were associated globally. Population stratification was excluded as the basis for these results. Linkage disequilibrium contrast tests supported selection at TTC12 exon 3 and ANKK1 exon 2.

We conclude that variants in TTC12 exon 3, NCAM1 exon 12, and the two 3'-ends of ANKK1 and DRD2 co-regulate risk for comorbid AD and DD.

Read Full Abstract

Request Reprint E-Mail: joel.gelernter@yale.edu

_________________________________________________________________