Aims

To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.

___________________________________________

Friday, November 16, 2007

Optimal brain network synchrony visualization: Application in an alcoholism paradigm.
Conf Proc IEEE Eng Med Biol Soc. 2007;1:4285-4288.




Although Electroencephalographic (EEG) signal synchronization studies have been a topic of increasing interest lately, there is no similar effort in the visualization of such measures.

In this direction a graph-theoretic approach devised to study and stress the coupling dynamics of task-performing dynamical networks is proposed. Both linear and nonlinear interdependence measures are investigated in an alcoholism paradigm during mental rehearsal of pictures, which is known to reflect synchronization impairment. More specifically, the widely used magnitude squared coherence; phase synchronization and a robust nonlinear state-space generalized synchronization assessment method are investigated.

This paper mostly focuses on a signal-based technique of selecting the optimal visualization threshold using surrogate datasets to correctly identify the most significant correlation patterns. Furthermore, a graph statistical parameter attempts to capture and quantify collective motifs present in the functional brain network.

The results are in accordance with previous psychophysiology studies suggesting that an alcoholic subject has impaired synchronization of brain activity and loss of lateralization during the rehearsal process, most prominently in alpha (8-12 Hz) band, as compared to a control subject. Lower beta (13-30 Hz) synchronization was also evident in the alcoholic subject.

Read Full Abstract


Request Reprint E-Mail: sakkalis@ics.forth.gr.
__________________________________________________________