Monday, January 25, 2010

Reversal of Alcohol-Induced Learning Deficits in the Young Adult in a Model of Fetal Alcohol Syndrome

To evaluate whether treatment with neuroprotective peptides to young adult mice prenatally exposed to alcohol reverses alcohol-induced learning deficits in a mouse model of fetal alcohol syndrome, whether the mechanism involves the N-methyl-d-aspartate (NMDA) and γ-aminobutyric acid type A (GABAA) receptors, and whether it is related to glial cells.

Treatment with D-NAPVSIPQ and D-SALLRSIPA reversed the alcohol-induced learning deficit in both learning tests as well as the NR2A and NR2B down-regulation in the hippocampus and the up-regulation of NR2A in the cortex and NR2B in the cortex and cerebellum (all P<.05). No significant differences were found in GABAA expression. Moreover, the peptides changed activity-dependent neuroprotective protein expression in the cortex (P=.016) but not the down-regulation of VIP (P=.883), probably because the peptides are downstream from VIP.

Alcohol-induced learning deficit was reversed and expression of NR2A and NR2B was restored in the hippocampus and cortex of young adult mice treated with D-NAPVSIPQ and D-SALLRSIPA. Given the role of NMDA receptors in learning, this may explain in part the mechanism of prevention of alcohol-induced learning deficits by D-NAPVSIPQ and D-SALLRSIPA.

Read Full Abstract

Request Reprint E-Mail: incertim@mail.nih.gov.
______________________________________